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The influence of chain entanglements on the autohesion of linear polymers was investigated using a 
stochastic model. The fracture energy of a polymer interface was expressed in terms of the total number of 
effective crossings, which was in turn related to the molecular-weight distribution and the contact time. 
Experimental studies of autohesion of dried and polished poly(methyl methacrylate) surfaces at 117°C 
validated the theoretical predictions. 
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INTRODUCTION 

Polymer-polymer surface interactions are encountered in 
a number of areas including polymer welding x and 
bioadhesion of polymeric materials on biological tissues 2. 
The interpenetration of macromolecular chains at the 
polymer-polymer interface at a temperature higher than 
the glass transition temperature is the basis of the 
diffusion theory of polymer adhesion proposed by 
Voyutskii 3. Molecular bridges formed due to polymer 
self-diffusion are responsible for the adhesive strength. In 
the cases of polymer autohesion and crack healing, the 
measured brittle fracture energy increases with the 
contact time above the glass transition temperature. 
Eventually it reaches a plateau value equal to the fracture 
energy of the neat polymer 4-6. 

Many theoretical models have been proposed to 
describe the time dependence of the fracture energy in 
polymer autohesion. De Gennes 7, Prager and Tirrell s, 
Jud et al. 5 and Adolf et al. 9 assumed a chain scission 
mechanism, whereas Wool x° invoked a chain pull-out 
fracture criterion for the polymer chains crossing the 
junction plane. Kim and Wool a ~ also postulated that the 
fracture strength is proportional to the chain 
interpenetration thickness. Although these models 
predict the variation of the fracture energy with the 
contact time, they do not show the molecular-weight 
dependence of the fracture energy of neat 
polymers 5:'8'~°'1~ The analysis of Adolf et al. 9 can 
establish this dependence but requires the definition of an 
additional physical parameter. 

We have proposed a2 a new molecular theory for the 
molecular-weight dependence of the polymer fracture 
properties using structural and entanglement character- 
istics of the chain macromolecules. A chain scission 
criterion was invoked for the polymer chain segments 
being entangled about the fracture plane and theoretical 
predictions agreed well with experimental data for the 
fracture energy and strength of polystyrene and 
poly(methyl methacrylate) 

A stochastic model is presented here to examine the 
effect of chain entanglements on the autohesion of 
linear polymers and to investigate the dependence of the 
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interfacial fracture energy on the polymer molecular 
weight and the contact time. The predictions of the model 
are compared with experimental measurements of the 
fracture energy of poly(methyl methacrylate) samples. 

CHAIN DISENGAGEMENT FROM A TUBE 

Polymer chains with molecular weight M much larger 
than the threshold value corresponding to the onset of 
chain entanglements, 2Me, diffuse by reptation 13-16 in a 
polymer melt. The reptation theory of polymer diffusion 
is used here to describe the interpenetration phenomenon 
of the polymer chains across the junction plane during the 
autohesion process. 

In the stochastic modelling, the equivalent random 
walk of the actual chain is considered. The equivalent 
Gaussian chain of a macromolecule is defined so that the 
mean-square end-to-end distance and the fully extended 
length of the random chain be the same as the 
corresponding values of the actual chain17 The degree of 
polymerization N and the statistical link length b of a 
random chain are related to the degree of polymerization 
No, the bond length I and the characteristic ratio C~ of a 
polycarbon chain by the following expressions. 

N = 2 N o / 3 C ~  (1) 

b =  (x/~C~ol (2) 

A polymer chain is confined in a tube, which is formed 
by the topological constraints of neighbouring 
macromolecules. The tube diameter and length are 
stochastic variables themselves. Nevertheless, they are 
assumed constant and equal to the corresponding mean 
values. The tube diameter is equal to the correlation 
length {, which is related to the degree of polymerization 
between two consecutive entanglements, Ne by: 

¢=N~/2b  (3) 

The polymer chain is partitioned into n segments with 

n = N/Ne  (4) 

and the confining tube has length Lt = n~. 
The diffusion of a polymer chain along its tube is 

characterized by a tube diffusion coefficient Dr: 

Ot= TI~I/N (5) 
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Figure I The disengagement of a polymer chain from its tube of length 
n~ and diameter ~ at time to is caused by chain reptation and is 
accomplished in two steps. First, one chain end (filled circle) reaches its 
maximum excursion a~ to the left at time t I without moving to the right 
farther than (n - a)~. Afterwards the same chain end advances a distance 
n~ to the right for the first time at time t 2 without moving to the left any 
farther than its position at time q .  The broken lines designate the lost 
portions of the original tube. The location of the left boundary of the 
remainder of the original tube at time t~ is immaterial 

in equation (7) is equal to the probability that a chain end 
initially located at x = 0  reaches the point x =  - a  for the 
first time at times between t and t + d t  without ever 
crossing the point x =  n - a .  Also, the term 

0a (x, t, a, n) da 

is equal to the probability that a chain end starting from 
x = - a  at t = 0 is found between x and x + dx at time t 
without moving farther than x = - a -  da to the left and 
x = n - a  to the right. From equations (7) and (8) the 
function P(t, n) is described as: 

oo co 
16 E, E, 1 P(t, n ) = ~  i 2 _j2 

i = l , j j = l  

x [ e x p (  J2~z2Dt'~--exp(~// izrt2Dt~l~ .il] 

16Dr ~,  j2n2Dt'] 
+ ~ T -  exp (9) 

j : l  V /  

Here T is the absolute temperature and #1 is a constant 
independent of N. The motion of a chain end is Brownian 
and is described by the one-dimensional Fokker Planck 
equation I a: 

8 0 ,  t~2 
~ p( O; x, t)= D ff~xz P(O, O; x, t ) (6) 

where p(0, 0; x, t) dx stands for the probability that a 
chain end located at x = 0 at t = 0 is found between x and 
x + dx after time t (t/> 0). The curvilinear coordinate x has 
been normalized with respect to the correlation length 
and the diffusion coefficient D is equal to DU~ 2. 

As the polymer chain diffuses along the tube, the tube is 
gradually destroyed and replaced by newly formed 
portions. Nevertheless, the tube length is always 
constant. A polymer chain escapes from its original tube 
once the maximum separation of two positions of a chain 
end about its starting position is equal to the tube length. 
The process of chain disengagement from its tube is 
depicted in Figure I. 

The fraction of n-segment polymer chains that have not 
been disengaged from their original tubes at time t is 
calculated s as: 

P(t 'n )=D r dt~ f~  da 

fo x dx ~aa p(x, t - tl, a, n)]. = o (7) 

where p(x, t,a,n) is the solution of equation (6) subject 
to absorbing boundary conditions at x = - a  and 
x = n - - a :  

2 ~ sin(irca']sin(irc(x+a)'] p(x, t, a, n) = -  /_. 
ni=~ \ n / \ n / 

x e x p (  i27r2Dt~ 
n ) (8) 

The term 
8 

o p(x, t, a, n)k= - - a  

The prime in the summation symbol designates 
summation over all odd integers. 

The time and segment-number dependences of the 
function P(t,n) can be lumped into that of the 
dim.ensionless time z defined as: 

z = t / z ,  (10) 
with 

z r = n Z / 2 D  (11) 

The parameter zr is the reptation time, i.e. the time 
required for a polymer chain to diffuse along its tube. 
Then, equation (9) is modified to give the fraction of 
polymer chains P(z) that have not been disengaged from 
their original tube at time z as: 

oo oo 
16 2 ,  2 ,  1 

P(z) = ~ i= 1,j j= 1 i2 _j2 

×[expl- --)-exp 2 

+8 r  ~ '  exp - - - J 2  2 r (12) 
j = l  

Also, the fraction of polymer chains Q(z) that have been 
disengaged from their original tubes and, therefore, have 
completely relaxed at time z is obtained as: 

Q(z)= 1 -P ( z )  (13) 

DYNAMICS OF CROSSING DENSITY 

Problem definition 
The polymer chains that can interpenetrate at the 

polymer-polymer interface at contact time z are those 
that have been disengaged from their original tubes, as 
well as the escaped chain portions (referred to as minor 
chains 11) of the macromolecules still confined in part of 
their original tubes as shown in Fioure 2. Each partially 
relaxed polymer chain is responsible for two minor chains 
of segment numbers n 1 and n2 such that 0 < n  1 + n 2 < n .  

Let P(n 1, n2 z, n) dn 1 dn2 be the fraction of n-segment 
partially relaxed polymer chains at time z associated with 
two minor chains with segment numbers between n~ and 
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Figure 2 The chain interpenetration across the junction plane x = 0 is 
accomplished through the gradual destruction of the confining tube at 
the time to at which the polymer-polymer interface was formed. The 
polymer chains that can cross the interface are the relaxed chains and the 
minor chains of partially relaxed chains 

nl + dnl, and n 2 and n 2 + dn2, respectively. The sequence 
of events for the formation of two minor chains is 
presented in Figure 3. The double density function 
P(nx,n2,z ,n  ) is calculated by solving a first-passage 
problem 1 s twice: 

P(n l , n 2 , z , n )=  - ~ -  jo dzl da~x  

f O  - t l  x p(x,~l,a, nt)[~= -a dT2 

~-~"XC~-~P(X'T2'a, nt)la:O)x=n t 

x f--~ p(nl, z - z  1 - z 2 ,  a, nt)la = o 

with 

+ ~ -  dz 1 da 

~p(x,.rl,a,n,)[x:.t_afl-~dz,, 

-~a P(X, ~ 2, a, nt)[, = o ) x : , ' 

~a P(n2, z -- Zl -- z2, a, nt)la= 0 (14) 

nt=nl  +n2 (15) 

The polymer chains crossing the junction plane are able 
to support stresses only if they are entangled about the 
interface. These chain crossings are referred to as effective 
crossings. Chain entanglements are assumed to occur at 
the end of each segment, excluding the final one. (The 
number of segments n is assumed integer.) The minor 
chains that can form effective crossings are those with 
degrees of polymerization larger than Ne. The total 
number of entanglements in an nt-segment minor chain is 
[nl]. (The symbol [hi] represents the integer part of nl.) 
The first entanglement along a minor chain is located 
after nl - [ h i ]  segments or (nl -[nl])Nc statistical links 
from its starting point. The chain segment from the 

starting point of the minor chain to the  first entanglement 
may be part of an effective crossing. 

The number of effective crossings of a minor chain 
depends on the length of the remaining portion of the 
original tube as well as the configuration of the other 
minor chain. A minor chain of nl segments can form at 
most [nl] effective crossings if there exists an 
entanglement along the chain confined in the remaining 
portion of the original tube as shown in Figure 4a. Then, 
its starting point can be considered anchored in space and 
the number of effective crossings of the minor chain does 
not depend on the interpenetration of the other minor 
chain. Nevertheless, if there is no entanglement located 
along the chain confined in the remainder of the original 
tube, the calculation of the number of effective crossings 
of one minor chain is coupled to that of the other minor 
chain as shown in Figures 4b and 4c. 

Consequently, the total number of effective crossings 
Non(z, n) per unit area of the x = 0 plane, assumed to be the 
junction or refracture plane, by n-segment linear polymer 
chains at time z is calculated as follows: 

Ne,(~, n) = Q(~)N~d~,  n) + 2 dn I Aml(n I , n) 

f~ 
- End - 1 

x dn2 (nl, n2, z, n) 

+2  ;~  dn 1 A~,2(nl,n ) 

fl ~-nl X dn 2 P(nl, n2, "c, n) 
-[.1]-1 

+4  dnl _.Ii-[.,]- 1 
-- i n - - n  I 

dn2 P(nl,n2, z,n) 

fo fo ° x dx o r(x o, n) dxl  P.~- [.o(Xo; xl) 

;o o × dx 2 n a - n  l - n2 (X1 ;  X2) 

x t ° dx a Pn2_[n2](X2; X3) (16) 
d -  oo 

The first term of the right-hand side of equation (16) 
results from the polymer chains that have been 
completely disengaged from their original tubes. Here 
Ne~(oo, n) is the effective crossing density of n-segment 
linear polymer chains at infinite time, which is equal to 
the corresponding value of the neat polymer 12: 

Ncff( oo , n) = N ~r( oo , oo )(n - 2 )/n (17) 

with 

Naf(oQ, cxD)= 2x//~pbSA 
M~N~/2 (18) 

where p is the polymer density, NA is the Avogadro 
number and Ms is the molecular weight of the statistical 
link. 

If the chain portion confined in the remainder of the 
original tube includes at least one entanglement the 
effective crossings of the minor chains are described in the 
second term. The coefficient 2 is related to the presence of 
two minor chains per polymer chain. The function 
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Figure 3 The partial relaxation of an n-segment polymer chain results 
in the formation of two minor chains with nl and n 2 segment numbers 
(nl+nz=n,<n). Here one chain end (filled circle) advances to its 
farthest position to the left, a¢, and to the right, (n, - a)~, for the first time 
at times t I and t2, respectively. The same result can also be achieved if 
the particular chain end reaches its extreme point to the right before that 
to the left 

Aml(n 1, n) stands for the effective crossing density of n- 
segment polymer chains due to the nl-segment minor 
chains assumed to have their starting point anchored. It is 
derived in the Appendix as: 

Aml(nl, n)-- No~(oo, oo){[nl] - 1 + (n 1 - [nl])l/2)/n 
(19) 

The last two terms refer to the minor chains of partially 
relaxed chains that do not include an entanglement in the 
portion confined in the remainder of the original tube. 
The third term is due to the chain segments between two 
consecutive entanglements along the minor chains. The 
function A,.2(nx,n ) represents the effective crossing 
density of n-segment polymer chains caused by the n l- 
segment minor chains assumed to have their starting 
point dangled. It is also derived in the Appendix as: 

A.,2(n!, n) = N=~(oo, ~)([nl]-  1)/n (20) 

The contribution of the chain segments whose portion is 
confined in the remainder of the original tube is described 
in the fourth term of equation (16). The coefficient 4 
accounts for the two minor chains and the two half-spaces 
they originate from. The density function r(xo, n) is 
given ~ 2 by: 

r(xo, n) = p N A/ MsnN~ (21) 

where r(xo, n) dx o is the number of n-segment chains 
starting between Xo and x o + d x  o per unit area. Also, 
pk(XO; Xk) dx k is the probability that the end of the kth 
segment of a polymer chain starting from x o is found 
between x k and Xk+dXk, and ~k(Xo;Xk) dXR is the 
probability that the end of the kth segment of a polymer 
chain starting from Xo and not crossing the x = 0 plane is 
found between Xk and Xk + dXk (Xo and Xk have the same 
sign). The function pk(Xo; Xk) is Gaussian: 

flk 2 2 
P k ( X o , X k ) = - ~ q - ~ e x p [ - - f l k ( X k - - X o )  ] ( 2 2 )  

with 
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= (23) 
The density function Zk(X0; Xk) is derived in the Appendix 
a s :  

n~(Xo; xk) 

flk{exp[ -- fl~(Xk -- XO) 2] -- exp[ - fl~(x k + Xo) 2] } 
- -  ~ 1 / 2  er f ( f lkXo ) 

(24) 

An approximate solution 
The exact solution of the problem as stated in the 

previous section, though feasible, is very cumbersome. 
Most of the difficulty arises from the coupling of the 
interpenetration processes of the two minor chains. An 
approximate solution is presented here to overcome this 
difficulty. The value of Ne~(z, n) may be calculated as 
follows: 

f: Ne.(z,n)=Q(z)Ne~(oo,n)+ 2 dnl Am(nl,n) 

t 
~n --rl 1 

x dn2 P(nl, n2 z, n) (25) 
0 

The function A,.(nl, n) is the effective crossing density of 
the nl-segment minor chains out of n-segment polymer 
chains. The functions A,.~(nl,n) and Am2(nl,n) are 
limiting values of that of A,,,(n 1 , n): 

A,. l(nl ,n)~ A, . (nl ,n)~ Am~(nl,n ) (26) 

Recognizing that [nl] + ( n l -  [nl]) 1/2>1nl >1 [nl] we 
assume that: 

A,.(n 1 , n) "" Ne~( ~ , ~)(nl  - 1)/n (27) 

From equations (25) and (27) the total number of effective 
crossings at contact time z is derived as: 

Nat(z, n)/Nerf(~, ~ ) 

16 ~ ~ c~(n) 
= Q ( z ) ( n - 2 ) / n + ~  ~ '  ~ i2_ j  2 

i = l , j j = l  

x [exp ( J 2 2 2 Z ) - e x p ( - i 2 2 2 ~ z ) ]  

+8~ ~ '  ci(n)exp _ _ _ J 2  2 z (28) 
j = l  

with 

c~(n) = ( -  1) ~ ÷ 1 (n - 1) sin(jg/n) (29) 
n jrc 

J 
b 

Figure 4 The chain segment from the starting point of a minor chain to 
the first entanglement located across the junction plane is part of an 
effective crossing, if there is at least one entanglement located along the 
chain portion confined in the remainder of the original tube (a). If the 
confined chain portion forms no entanglements, this first segment may 
(b) or may not (c) be part of an effective crossing depending on the 
interpenetration of the other minor chain 
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Figure 5 Variation of the fraction of polymer chains that  have been 
disengaged from their original tube, Q(z), as well as that  of  the fraction of 
partially relaxed polymer chains, P(z),  with the normalized time z 

Asymptotic solution 
The variation of the crossing density Nat(z, n) with the 

number of chain segments n is due to the inability of the 
terminal segment to form an effective crossing. For high 
values of n the effect of the dangling ends is diminished 
and the total number of effective crossings per unit area is 
obtained as: 

Nat(z, ~ )  = Q(z)Nefr(~, ~ )  + 2 .f~ dnl Am(n1' n)  

x dn2 P(nl, n2, z, n) (30) 

with 

A,.(n t , n) = Netr(~, ~)nl /n  (31) 

The solution of equation (30) is given by 

N ~ z ,  oc )/Non(~, ~ ) 
16 o0, 1)/+1 

"= , ' ] = I  i 2 - j 2  

× [exp(-j2rczz/2) - exp( - i2r~zz/2)] 
oo 

+ 8z ~ '  exp(-j2nzz/2) (32) 
j = l  

Effect of  molecular-weight distribution 
Though the crossing density Nat(z,n) has been 

calculated for integer values of n, the validity of equation 
(28) can be extended to any value of n greater than 2. For 
polydisperse polymeric materials equation (21) is 
modified as: 

r(xo, h) = pN A/MshN ~ (33) 

where h is defined in terms of the number-average degree 
of polymerization A7 n as: 

h = ]q./N~ (34) 

IfF(n, m) is the chain segment distribution with the vector 
m standing for the distribution parameters, the effective 
chain crossing density for a polydisperse polymer is given 
by: 

Nat(t, m) = (l/h) nNat(t, n)F(n, m) dn (35) 

The lower integration limit in the integral is 2 instead of 0 
as polymer chains with degrees of polymerization smaller 
than 2N~ cannot be entangled about the junction plane. 
The chain segment distribution F(n, m) is expressed in 
terms of the molecular-weight distribution F(M, m) as 
follows: 

F(n, m) = MeF(M, m) (36) 

FRACTURE ENERGY AND TOUGHNESS 

The fracture energy GF(Z,n) of a polymer interface 
between two n-segment polymers at normalized contact 
time z is related a2 to the total number of effective chain 
crossings N ~ z , n )  of the junction plane through the 
equation: 

GF(Z, n) = Nat(z, n)N~es (37) 

The parameter es is the energy required to break a 
statistical link. Therefore, for a monodisperse polymer 
we obtain that: 

GF(Z, n) N~fr(z, n) 
(38) 

Gv(oO,n) Neff(oo,n) 

The fracture toughness KF is defined for a plane stress 
condition t as: 

KF = ( E G F )  1/2 (39) 

where E is the tensile modulus of elasticity. The value of E 
is independent of the contact time t and remains constant 
during the autohesion process 1°. Thus, the normalized 
fracture toughness at contact time t is calculated as: 

Kvtt, m) ( Nat(t, m) ~1/2 (40) 
Kv(oO, m) = \ N ~ ) J  

for a polydisperse polymer. 

RESULTS AND DISCUSSION 

The fraction of polymer chains Q(z) that have been 
disengaged from their original tube at normalized time z 
has been calculated from equations (12) and (13). Its 
variation with the time z, as well as that of the 
complementary fraction P(z), is shown in Figure 5. At a 
time equal to twice the reptation time 99.9 % of the chains 
have relaxed from their original configuration. The 
average tube disengagement (or escape) time ze(n ) of an n- 
segment chain is defined as: 

f: %(n) = t dQ(t, n) (41) 

and is calculated as 

"C e = Z r / 2  (42) 

The reptation time of a polymer chain of molecular 
weight M scales to M a as deduced from equation (11): 

Zr=ZlM 3 (43) 

where the monomer relaxation time z a is temperature- 
dependent. Consequently, the time required for the 
fracture energy of a polymer-polymer interface to attain 
the value of the neat polymer depends on the polymer 
molecular weight and the temperature. 
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Figure 6 Variation of the probability density function P(hz, n2, "r) with 
the normalized minor chain lengths ht and h 2 at normalized times z 
equal to 0.25 (a), 0.50 (b) and 1.00 (c) 

The dependence of the probability density function 
P(n,,nz,z,n ) on the parameters n~, n 2 and n can be 
lumped to that of dimensionless segment numbers defined 
as h, =nt/n and h2=n2/n. Then, equation (14) can be 
modified to yield the fraction P(h,,h2,r)dhl dhg of 
partially relaxed chains at time z associated with two 
minor chains with segment numbers in the range from ~, 
to h, + dh,,  and h 2 to h 2 + dh2, respectively. The change of 
the density function P(h,, h 2, z) with the values of h, and 
hE has been calculated numerically for the z values of 0.25, 
0.50 and 1.00, and is shown in Figure 6. The fraction of 
chains with specified minor chain lengths initially 
increases with time and reaches a maximum value. 
Thereafter it decreases, reaching a zero value at large 
times. This dependence results from the gradual 
disengagement of the polymer chains from their original 
tubes. The function P(h,, h2, Z) is symmetric with respect 
to hi and h2 and its abrupt decrease along the line 
h, + h 2 =  1 is due to the chain relaxation. Also, the 
integral 

fo'f/-" dh 1 dh 2 P ( n l ,  h2, l )  

is equal to P(r). 
The number of effective crossings per unit interface, 

Nen(z, n), by n-segment polymer chains at contact time z is 

an invariant quantity, i.e. it is independent of the selection 
of the equivalent Gaussian chain. The value of Ne~(~, ~ )  
is an invariant quantity 12. The number of chain segments 
n is also an invariant equal to M/Me. The parameter M e is 
a material property and its value can be measured by 
independent experiments.' 9 

The normalized fracture energy GF(Z, n)/GF(~,n) is 
calculated from equations (28) and (38). Its variation with 
z 1/2 for the n values of 5, 10,. 20 and 50 is presented in 
Figure 7. The value of GF(Z, n)/Gv(~, n) increases with the 
time z and eventually reaches a plateau value equal to 1. 
The interfacial fracture energy regains 99 .9~  of the 
fracture energy of the neat polymer after a time of 1.4zr. 
This time is shorter than that for the tube disengagement 
as minor chains can also interpenetrate across the 
junction plane. 

The time lag required for the growth of minor chains of 
molecular weight larger than Me is responsible for the 
sigmoidal nature of the curves showing the time 
dependence of the fracture energy. The average time zt 
required for a polymer chain to diffuse a distance of 
along its tube is equal to  Zr/n 2. For  high values of n the 
value of z t is much smaller than that of T r and the 
sigmoidal nature of the curve diminishes. Thus, the value 
of GF(Z,n)/GF(OC,n) increases as the number of chain 
segments n increases for the same value of z. 

The asymptotic value of the crossing density, Nedz, ~ ) ,  
given by equation (32) can be also derived'2 as: 

Ne~(r, ~ )  = Nt(r)N e 1/2 (44) 

where Nt( Q stands for the total number of chain crossings 
of the junction plane at contact time r. The value of N~(z) 
was calculated by Prager and Tirrell s and is only 
dependent on z. 

The variation of the asymptotic value of the normalized 
fracture energy GF(Z,~)/GF(~,~) with z 1/2 is also 
shown in Fi#ure 7. It is seen that for small times GF(z, ~ )  
scales to r 1/2. Furthermore, we find that the equation: 

GF(Z, ~)/GF(~, ~:) ~ 1.546 r 1/2 (45) 

provides a good estimate of the normalized fracture 
energy with a second decimal point accuracy for z ~<0.17. 
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Figure 7 Variation of the normalized fracture energy GF('c,n)/ 
GF(73, n) with the square root of the normalized contact time r 1/2 for 
monodisperse polymers with number of segments n equal to 5 (curve a), 
10 (curve b), 20 (curve c), 50 (curve d) and infinity (curve e). The broken 
line has a slope of 1.596 
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Figure 8 Comparison of theoretical predictions with experimental 
results 5 of the variation of the normalized fracture toughness 
KF(t,h)/Kr(oo,h) of poly(methyl methacrylate) with the fourth root of 
the contact time t 1/4 at 390K for samples obeying the most probable 
molecular-weight distribution with h = 6 

The t 1/2 dependence of the fracture energy of high- 
molecular-weight polymers is only valid for monodis- 
perse polymers. In polydisperse polymers there exists a 
spectrum of relaxation times for different sized chains that 
causes such a time dependence to decay. 

Theoretical predictions of the variation of the 
normalized fracture toughness KF(t , fi)/KF(OO, fi) with t 1/4 
calculated from equation (40) are compared in Figure 8 
with experimental measurements s for polydisperse 
poly(methyl methacrylate) (PMMA). The polymer 
samples obeyed the Schultz-Flory most probable 
molecular-weight distribution 2°: 

F(M, ffI,) ~_ (1//~tn)exp( - M/fl.) (46) 

where the number-average molecular weight M, was 
60 000. Dried and polished PMMA surfaces were brought 
in contact for a time t at the temperature of 390 K. This 
temperature is higher than the glass transition 
temperature 21 ofPMMA (Tg = 378 K) and, therefore, the 
polymer chains are mobile and can interdiffuse across the 
junction plane. After time t the polymer interfaces were 
quenched to 20°C to freeze the chain interpenetration 
process and the fracture toughness was measured. 

It is observed that the predictions of the model are in 
good agreement with the experimental data. For high- 
molecular-weight monodisperse polymers the variation 
of the fracture toughness with t 1/4 would have been linear 
for small times. The important feature of the proposed 
model is that it includes no adjustable parameters. The 
material properties of PMMA used in the calculations are 
the molecular weight between entanglements, Me 
(equal 19 to 10 000), and the monomer relaxation time, z~ 
(equal to 3.87 x 10- t i s at 390 K). 

The preceding analysis is valid for autohesion of fully 
annealed polymer surfaces. Here there is no dependence 
of the molecular-weight distribution on the distance from 
the interface. On the contrary, for crack healing the 
molecular-weight distribution depends on the position. 
Owing to chain scission during polymer fracture 12 there 
are more shorter polymer chains in the vicinity of the 
crack than in the bulk of the material. Nevertheless, the 
same fundamental phenomena of chain interpenetration 

also govern the crack healing process. The knowledge of 
the spatial distribution of the chain ends will enable us to 
predict the fracture strength recovery of a cracked 
polymer specimen. 

CONCLUSIONS 

The interpenetration of polymer chains during the 
polymer autohesion process was investigated. A 
stochastic model was developed to calculate the number 
of effective chain crossings Non(t, M) per unit junction 
area by polymer chains of molecular weight M larger than 
2Me at contact time t. The model couples the recently 
proposed polymer fracture theory and the reptation 
theory of polymer self-diffusion. The fracture energy 
GF(t,M) of the polymer-polymer interface is 
proportional to N~t, M)M e. The value of GF(t, M) scales 
to the square root of the contact time for t values smaller 
than the reptation time and for monodisperse polymers 
with M >>2Me. Theoretical predictions of the change of 
the normalized fracture toughness with the contact time 
agreed with experimental results for poly(methyl 
methacrylate). 

This work provides the mathematical framework for 
the estimation of the diffusion and relaxation constants of 
chain macromolecules from autohesion/refracture 
experiments. Finally, it can be extended to study the 
adhesion of two different polymers provided that: (i) they 
are thermodynamically compatible, and (ii) they have 
similar structural, thermal and diffusional properties. 
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APPENDIX 

Calculation of the functions Am~(nx, n) and Am2(nl, n) 

If we designate by am~(Xo, nl) the average number of 
effective crossings of the x = 0  plane by an nl-segment 
minor chain starting from and being anchored at Xo we 
obtain 12 for n I ~ 1 that: 

am,(Xo, nl) = 0 (A. 1) 

and for n~ > 1 that: 
E.~] - 1 

aml(xo, nl)-- ~ Aak+l(XO) (A.2) 
k = O  

The function Aa k + 1 (Xo) stands for the probability that the 
(k + 1)th segment of a polymer chain starting from x0 
forms an effective crossing and is calculated for k=0  as: 

[ fSoodxlp.l_t.,3(Xo;Xx) (Xo>0) 

Aal(x°)= fodXlP._t.,](Xo;xl) (Xo<0) 

(A.3) 

and for k>~ 1: 
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Aak+l(Xo) = dXk+l dXkP.l-[,1]+k-l(Xo;Xk) 
o o  

× p l ( x k ; x k + l ) - F f ; d x k + l ; ~ o o d x k  

×p.l_[nd+k_l(XO;Xk) pl(Xk;Xk+l) (A.4) 

Here pk(xo; Xk)dXk is the probability that the end of the 
kth segment of a polymer chain starting from Xo is found 
between xk and xk + dXk. 

The number of effective crossings per unit area of n- 
segment polymer chains due to the nl-segment minor 
chains assumed to have their starting point anchored, 
A.,l(n 1 , n), is calculated as: 

f_o A,,,(nl, n) = dxo r(xo, n)aml(xo, nl) (A.5) 
clo 

where r(xo, n)dx o is the number of n-segment chains 
starting between x o and x o + d x  o. The crossing density 
Aml(nl,n ) is eventually derived as: 

A,,,(nl, n)= Ne~(~, ~){[n~] - 1 + (n~ - [n~])x/2}/n(A.6) 
where No,(oo,o~) stands for the number of effective 
crossings per unit area of a neat polymer of infinite 
molecular weight. 

If we neglect the effective crossing of the portion of the 
minor chain from its begining to the first entanglement, 
the average number of effective crossings of the x =0  
plane by an n~-segment minor chain, am2(xo, nl), is given 
for n~ <2 by: 

am2(Xo, nl) = 0 (A.7) 

and for n1>~2 by: 

[ . 1 ]  - 1 

a~2(Xo, na)= ~ Aak+l(X0) (A.8) 
k = l  

Similarly, the number of effective crossings per unit area 
of n-segment polymer chains due to the n-segment minor 
chains assumed to have their starting point dangled, 
A~2(n 1, n), is obtained as: 

Amz(nl, n) = J ~  dx o r(xo, n)am2(X o, n 1 ) (A.9) 

and is derived as: 

A,,2(n , , n) = N~,(oc, ~ ) ( [ n l ]  - l)/n (A. 10) 

Calculation of  the probability density function gk(X0; Xk) 
We denote by rCk(Xo; Xk) dXk the probability that the end 

of the kth segment of a polymer chain starting from x o and 
not crossing the x = 0  plane is found between Xk and 
Xk+dXk (XO and Xk have the same sign). The density 

function nk(Xo;Xk) is proportional to the solution 
p(xo, 0; Xk, n) of the Fokker-Planck equation: 

~nP(Xo,O;Xk,n)= ~ ~XkX2kP(Xo,O;Xk,n ) (A.11) 

with the absorbing boundary conditions22: 

p(xo, O;O,n)=p(xo, O; ~ , n ) = 0  (A.12) 

where ~ is the mesh size between entanglements. 
The density function 7tk(Xo; XR) is obtained from the 

normalization of the solution of equation (A. 11): 

/fo o rCk(Xo; Xk) = p(x o, 0; X k, k) p(x o, 0; x k, k) dXk (A. 13) 

Hence, we derive that: 

lr~(Xo; xk) 

flk{exp[ - flkz(Xk -- Xo) 2] -- exp[ -- fl~(xk + Xo) z] } 

rr 1/2 erf(flkX0) 

(A.14) 
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